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Main problems of vacuum technology:

to pump a gas

to maintain a low pressure

to measure a flow rate

to measure a low pressure

Gas dynamics is a basis of vacuum technology
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Gas rarefaction

Knudsen (Kn) number is defined as

Kn =
molecular mean free path

characteristic size

In vacuum systems

105 Pa > pressure > 10−9 Pa

10−8 m < mean free path < 106 m

10−8 < Kn < 109
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Gas rarefaction

Free molecular regime

Kn� 1

Every particle moves independently on each other.
Test particle Monte Carlo method

Method of angle elements

Felix Sharipov DSMC x kinetic equation



Introduction Problems Pumps DSMC KE Conclusions

Gas rarefaction

Free molecular regime

Kn� 1

Every particle moves independently on each other.

Test particle Monte Carlo method

Method of angle elements

Felix Sharipov DSMC x kinetic equation



Introduction Problems Pumps DSMC KE Conclusions

Gas rarefaction

Free molecular regime

Kn� 1

Every particle moves independently on each other.
Test particle Monte Carlo method

Method of angle elements

Felix Sharipov DSMC x kinetic equation



Introduction Problems Pumps DSMC KE Conclusions

Gas rarefaction

Free molecular regime

Kn� 1

Every particle moves independently on each other.
Test particle Monte Carlo method

Method of angle elements

Felix Sharipov DSMC x kinetic equation



Introduction Problems Pumps DSMC KE Conclusions

Gas rarefaction

Hydrodynamic regime

Kn� 1

Continuum mechanics equations are solved
The methods are well developed and well known.

There are many commercial codes.
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Gas rarefaction

Transition regime

Kn ∼ 1

Navier-Stokes eq. is not valid
Intermolecular collision cannot be neglected

Direct simulation Monte Carlo method is applied

Kinetic Boltzmann equation is solved
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TYPICAL PROBLEMS
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Poiseuille flows

P1 P2- P1 > P2

To be calculated:

Ṁ mass flow rate

density (or pressure) distribution
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Non-isothermal flows, thermal creep

T1 T2- T1 < T2

To be calculated:

Ṁ mass flow rate

Q heat flow rate

density (or pressure) distribution
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Thermomolecular pressure difference

P1, T1 P2, T2

Ṁ = 0 no mass flow

To be calculated:
What is the pressure ratio

P2

P1
=
(
T2

T1

)γ
0 ≥ γ ≥ 0.5
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Couette flow

To be calculated:
Pxz shear stress
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Heat transfer between two plates

To be calculated:
qx Heat flux
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Heat transfer between two cylinders

Pirani sensor

To be calculated:
qr Heat flux
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Holweck pump

To be calculated:
Compression ratio

Pumping speed

Torque
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Combination Holweck and turbomolecular pumps
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Direct Simulation Monte Carlo method

DSMC
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DSMC, Main ideas

Gas flow through a short tube.
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DSMC, Main ideas

Flow region is divided into cells
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DSMC, Main ideas

M model particles are considered.
Their positions ri and velocities vi are saved.
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DSMC, Main ideas

Time is advanced in steps ∆t.
New positions are calculated

ri,new = ri,old + vi∆t
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DSMC, Main ideas

Gas-surface interaction is simulated.
Some particles are removed.
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DSMC, Main ideas

New particles are generated.
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DSMC, Main ideas

Intermolecular interactions are simulated.
Macroscopic quantities are calculated.
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DSMC, Main ideas

All steps are repeated many times in order to reduce the
statistical noise.
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DSMC, Orifice flow into vacuum

~ p1 p2

-

Reduced flow rate

W =
Ṁ

Ṁ0

, Ṁ0 =
√
πa2

vm
p1

Rarefaction parameter

δ =
PR

µvm
∝ 1

Kn
, vm =

√
2RgT
M
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DSMC, Orifice flow into vacuum

Sharipov, AIAA Journal (2002); J. Fluid Mech. (2004)
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DSMC, Orifice flow into vacuum

Sharipov, AIAA Journal (2002); J. Fluid Mech. (2004)

Fujimoto & Usami, Trans. ASME: J.Fluids Eng. (1984)
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DSMC, Orifice flow into vacuum

Sharipov, AIAA Journal (2002); J. Fluid Mech. (2004)

Fujimoto & Usami, Trans. ASME: J.Fluids Eng. (1984)

Jitschin et al., Vacuum (1995)
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DSMC, Orifice flow into background gas

W

δ
Sharipov, J. Fluid Mech. (2004)
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DSMC, Flow into vacuum through a short tube
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DSMC, Flow into vacuum through a short tube

Fujimoto & Usami (1984)
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DSMC, Orifice flow into background gas

Flow-field at p2/p1 = 100 and δ = 1000

%/%0 density

T/T0 temperature

Local Mach number
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DSMC, Orifice flow into background gas

Flow-field at p2/p1 = 10 and δ = 1000

%/%0 density

T/T0 temperature

Mach number
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DSMC

Advantages

The idea is very clear
Neither grid in the velocity space nor finite difference
scheme are necessary
The physical cells can be easily adapted to any
geometrical configuration
It is easy to simulate non-elastic collisions occurring in
polyatomic gases
Even more complicated phenomena like dissociation,
ionization etc. are considered without effort.
The books by G.A. Bird contain numerical codes that can
be modified and used in engineer calculations.
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DSMC

NICE!
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DSMC

IS IT UNIVERSAL REMEDY?
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DSMC, disadvantages

UNFORTUNATELY NOT
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DSMC, disadvantages

Axisymmetrical flows:

It is necessary to use the radial weighting factor.
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DSMC, disadvantages

Flow with high variation of density

It is necessary to use the longitudinal weighting factor.
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DSMC, Statistical noise

Kn=0.01 and P2/P1 = 0

Density distribution

Number of samples 104

Calculation time - few hours
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DSMC, Statistical noise

Kn=0.01 and P2/P1 = 0.5

Density distribution

Number of samples 105

Calculation time - few days
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DSMC, Statistical noise

Kn=0.01 and P2/P1 = 0.9

Density distribution

Number of samples 106

Calculation time - few weeks
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DSMC, Statistical noise

Kn=0.01 and P2/P1 = 0.9

Temperature distribution

Number of samples 106

Calculation time - few weeks
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DSMC, statistical noise

Statistical noise is very significant
at low Mach number
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DSMC

disadvantages

A large computer memory

Significant non-uniformity of model particle distribution

Significant statistical noise
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Kinetic equation
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Velocity distribution function

f(t, r,v)drdv number of molecules in drdv

n(t, r) =
∫
f(t, r,v)dv - number density

u(t, r) = 1
n

∫
vf(t, r,v)dv - bulk velocity

P (t, r) = m
3

∫
V 2f(t, r,v)dv - pressure

T (t, r) = m
3nk

∫
V 2f(t, r,v)dv - temperature

q(t, r) = m
2

∫
V 2V f(t, r,v)dv - heat flux vector

V = v − u

Felix Sharipov DSMC x kinetic equation
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Boltzmann equation

∂f

∂t
+ v · ∂f

∂r
= Q(ff∗)

Q(ff∗) =
∫ (

f ′f ′∗ − ff∗
)
|v − v∗|bdbdεdv∗

v′ and v∗
′ - pre-collision molecular velocities

v and v∗ - post-collision molecular velocities

Felix Sharipov DSMC x kinetic equation
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Boltzmann equation

Discrete velocity method:

v1, v2, ... ,vN ,

The BE is split into N differential eqs. coupled via the collisions
integral

Felix Sharipov DSMC x kinetic equation
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Model equations

The collision integral is simplified

BGK model
Q(ff∗) = ν

(
fM − f

)
S model

Q(ff∗) = ν

{
fM

[
1 +

2m(q · V )
15n(kT )2

(
mV 2

2kT
− 5

2

)]
− f

}

Felix Sharipov DSMC x kinetic equation
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Couette flow

Pxz shear stress?
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Couette flow

Input equation

c
∂φ

∂x
= δ(u− φ), u =

1√
π

∫
e−c

2
φ(x, c)dc

δ =
Pd

µvm
∝ 1

Kn

Free-molecular regime, δ = 0

analytical solution

P fmxz =
p√
π

vw
vm

, vm =
√

2kT/m

Felix Sharipov DSMC x kinetic equation
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Couette flow

Transitional regime, δ ∼ 1

Equation is solved numerically in few seconds
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Heat transfer between two cylinders

Pirani sensor

To be calculated:
qr Heat flux
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Heat transfer between two cylinders

Input equation

cr
∂h

∂r
− cϕ

r

∂h

∂θ
= δ

[
υ + τ

(
c2 − 3

2

)
+

4
15
qcr

(
c2 − 5

2

)
− h
]
,

υ(r) =
1

π3/2

∫
exp(−c2)h(r, c) dc,

τ(r) =
1

π3/2

∫
exp(−c2)h(r, c)

(
2
3
c2 − 1

)
dc,

q(r) =
1

π3/2

∫
exp(−c2)h(r, c)

(
c2 − 5

2

)
cr dc.

Felix Sharipov DSMC x kinetic equation
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Heat transfer between two cylinders

Free-molecular regime, δ = 0

analytical solution

qfmr (r) =
p vmR1√

πr

∆T
T0

,

Felix Sharipov DSMC x kinetic equation



Introduction Problems Pumps DSMC KE Conclusions

Heat transfer between two cylinders

Transitional regime,δ ∼ 1

Equation is solved numerically in few minutes
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Flow through a long tube

Ṁ =
πa2P

vm

(
−GP

a

P

dP
dx

+GT
a

T

dT
dx

)
GP = GP (δ) GT = GT (δ)

δ =
Pa

µvm
∼ 1

Kn

Felix Sharipov DSMC x kinetic equation
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Flow through a long tube

Input equation to obtain GP

cr
∂φ

∂r
− cθ
r

∂φ

∂θ
= δ(u− φ)− 1

2
, u =

1√
π

∫
e−c

2
φ(x, c)dc

Free-molecular regime, δ = 0

analytical solution

GP =
8

3
√
π

Felix Sharipov DSMC x kinetic equation
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Flow through a long tube

Transitional regime δ ∼ 1

Equation is solved numerically in few minutes
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Flow through a long tube

If p1 � p2 and/or T1 � T2 then Eq.

Ṁ =
πa2P

vm

(
−GP

a

P

dP
dx

+GT
a

T

dT
dx

)
is integrated along x

Numerical calculations of Ṁ
can be carried out on-line

http://fisica.ufpr.br/sharipov

Felix Sharipov DSMC x kinetic equation
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Ṁ =
πa2P

vm

(
−GP

a

P

dP
dx

+GT
a

T

dT
dx

)
is integrated along x

Numerical calculations of Ṁ
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Modelling of Holweck pump

Scheme of pump

Scheme of single groove
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Modeling of Holweck pump

First stage
Four problems are solved for a single groove

Longitudinal Poiseuille flow

Transversal Poiseuille flow

Longitudinal Couette flow

Transversal Couette flow

Solution is determined by geometrical parameters of groove
and by local rarefaction parameter.
This stage takes few days of computation.
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Modeling of Holweck pump

Second stage stage

Compression ratio and pumping speed are calculated as a
linear combinations of the four solutions.

This stage takes few seconds of computation.

Felix Sharipov DSMC x kinetic equation



Introduction Problems Pumps DSMC KE Conclusions

Modeling of Holweck pump

Second stage stage

Compression ratio and pumping speed are calculated as a
linear combinations of the four solutions.

This stage takes few seconds of computation.

Felix Sharipov DSMC x kinetic equation



Introduction Problems Pumps DSMC KE Conclusions

Modelling of Holweck pump

Comparison numerical and experimental results
Compression ratio

Sharipov, Fahrenbach, and Zipp, JVSTA, Vol. 23, P.1331
(2005).

Felix Sharipov DSMC x kinetic equation



Introduction Problems Pumps DSMC KE Conclusions

Modelling of Holweck pump

Comparison numerical and experimental results
Dimensionless pumping speed

Sharipov, Fahrenbach and Zipp, JVSTA, Vol. 23 (1331).
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Kinetic equation

Advantages

No statistical noise.

Small computational memory

Short computational time (model equations)

Possibility to apply already obtained results
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Kinetic equation

Disadvantages

Grids in both physical and velocity spaces must be

carefully chosen

Discontinuity of the distribution function

Difficult generalization for gaseous mixtures and

polyatomic gases
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DSMC is recommended for:

Flows with high Mach number
Small (compact) region of gas flows
Complicated geometrical configurations
Flows with dissociation, recombinations, ionization etc.
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Kinetic equation is recommended for:

Flows with low Mach number
Extended region of gas flows
Simple geometrical configurations
Flows without dissociation, recombinations, ionization etc.
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Thank you for your attention

http://fisica.ufpr.br/sharipov/
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